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The restructuring of quantum mechanical applications for use on message-passing, distribu- 
ted memory multicomputers is found to be a challenge. A key computation in these large scale 
quantum chemistry packages is the determination of eigenvalues and eigenvectors of real sym- 
metric matrices. These computations arise during geometry optimization and vibrational anal- 
ysis, and typically consume at least half of the total computation time. This work illustrates 
the paraUelization of both tasks within the semiempirical quantum chemistry code, MOPAC, 
on Intel parallel platforms. The application of this parallel code is demonstrated on novel 
organic systems. 

0. Introduct ion  

Utilization of computationally derived chemical and physical properties has 
vastly enhanced the success of  experimental ventures into the creation of designer 
molecules of  technological and medicinal importance. Rational drug design and 
novel nanomolecular  materials would be complete fantasies if not  for the atomic 
scale insight provided by computational chemistry. Because of the high demand for 
pharmaceuticals and composite materials to display a special uniqueness of  action 
or efficiency in response, the tightness on specific structural tolerances and hence 
the degree of  complexity in these molecular blueprints are increasing at a rate only 
manageable by advanced computing methods (e.g. massive parallelization, or 
ultrafast vectorization). Despite the extraordinary abilities of  m o d e m  hardware 
technology and coding methods to manipulate the raw data, the rate limiting step 
in harmonizing the intricacy and precision required to push forward these chemical 
frontiers ultimately comes down to the optimization of the complex computat ional  
methodologies on state-of-the-art hardware platforms. 

There are currently three commonly employed theoretical methods for the study 
of  the properties of  molecules: Ab  Initio; molecular mechanics; semiempirical. It 
has been well-established that quantum mechanical methods based on Hartree-  
Fock (HF) theory provide a successful and thoroughly tested framework for molec- 
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Fig. 1. Schematic showing the overlap of the three commonly employed theoretical methods. 

ular calculations [1,2]. There are, however, major limitations in the size of molec- 
ular systems that can be reasonably calculated on the available hardware. Compu- 
tational costs and complexity of solving the large iterative eigenvalue/eigenvector 
systems associated with the theoretical methods become quite demanding [3]. Even 
the fastest computers have limitations on the size of molecular systems that can be 
solved due to CPU speed, memory, and disk space requirements. At present, the 
upper limit is about 100 basis functions 1, which corresponds to less than 40 first 
row atoms at a modest level basis set, i.e. about a tetrapeptide. On the other hand, 
molecular mechanics and molecular dynamics techniques are extremely fast 
empirical methodologies which are able to handle very large molecular systems, 
such as entire enzymes with over 100 peptide residues. These methods sacrifice in 
generality and accuracy. In addition, they are not parameterized for other than 
ground state systems, and are unable to adequately represent geometries involved 
in bond-making/bond-breaking processes. 

Intermediate to Hartree-Fock methods and empirical-based methods are semi- 
empirical methods. Like ab initio methods, they are basically quantum mechanical 
in nature, the main difference being that the semiempirical methods involve more 
approximations based on experimental data, thus simplifying the calculations con- 
siderably. Semiempirical methods are right on the verge of becoming of routine 
use in polymer and biochemical applications. The major constraint, despite the 
numerous methodological advanced in past years [4,5], is that the size of chemical 
systems that can be analyzed, being largely a function of available single-processor 
computer power. Although this power continues to increase in magnitude, it cannot 
continue to improve at a rate that keeps pace with the desires and expectations of 
the scientific community. Parallel architectures promise to make calculations of 
this size more of a reality. However, only recently has it been realistic to turn 
towards the parallel computing environment for any of these types of calculations 
[6-9], primarily due to the fact that new distributed-memory algorithms that utilize 
the architectures of the parallel platforms must be developed. 

This work focuses on the promises and concerns of applying parallel methods 
to semiempirical calculations for the solution of problems that are currently not 

Basis functions are mathematical functions which represent atomic orbitals as in descriptive or- 
ganic chemistry. The number of basis functions used in a calculation of a particular molecule deter- 
mines the level of accuracy of that calculation, and forms what is called a basis set. 
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possible with either ab initio or parallel ab initio methods [10-13], and with an accu- 
racy greater than that achievable with the molecular mechanics and dynamics 
type procedures. We describe the conversion and performance evaluation of the 
semiempirical quantum chemistry code, MOPAC [14-16] on the Intel iPSC/860 
and Paragon platforms currently housed at the San Diego Supercomputer Center. 

1. Semiempirical quantum methods 

The primary goal of quantum chemical codes is to solve the molecular SchrSdin- 
ger equation [1,17]. 

H ~  = E ~ ,  

where H is the molecular Hamiltonian operator, 

1 

t i ct tct i j>i tj 

The solution of this eigensystem provides the molecular wave function, from which 
a total description of the molecule, including all molecular properties such as equili- 
brium geometry, dipole moments, energetics, kinetics, and dynamics is obtained. 
The applications programs [18-20] for these theories are typically large and com- 
plex, and large real symmetric eigenproblems [12,21-23] arise in various options, 
notably self-consistent field (SCF) [24] computations and molecular vibration 
analysis. 

Multiplying the SchrSdinger Equation on the left by ~* and integrating over all 
space gives an expression that, in principle, allows the calculation of the eigenvalue 
a s  

E -- f ~*H~ aT 

The ratio, H~*/~ ,  in this expression will vary with position in space, giving rise 
to what has been historically referred to as the local energy method. For most pro- 
blems of chemical interest, this problem is not possible to solve. An approximate 
solution, however, which actually corresponds to the quantum state of lowest 
energy (the ground state), can be obtained by choosing a trial wave function, and 
adjusting parameters in that trial function to give a minimum energy. Thus, for an 
approximate wave function, ~, with the correct boundary conditions, one can 
solve 

f ¢*H¢ dr 
Eg,d -- f ¢*¢ dr 

such that Egrd >/Etrue; the variational principle [1]. To solve this, the linear variation 
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method is used. In this method,  a set of  fixed basis functions are chosen, and the 
trial wave function is expressed as a linear combination of  these functions (linear 
combinat ion of atomic orbitals, LCAO, approach). 

~i ~- Z CniXn 
n 

with the restriction Cni, )(.n E ~. In this method, the functions Xi are not allowed to 
vary throughout  the calculation, only the numerical coefficients, Cn~. T h e  minimum 
energy satisfies a set of linear homogeneous equations in the n parameters. For  
this set of  equations to have a nontrivial solution, the determinant of the coeffi- 
cients must  vanish: 

det[f ~*~H'~. d'c 

or, more simply, 

with 

-Ej f = 0  

det(H~n - SmnEj) = 0 

f 4.  =- J ~*.,H'~,, d'r,  

/ .  Sin. -- ~ m ~ .  d'r.  

The  H'.i are integrals representing the interactions of electrons within orbitals. 
and S.i is the overlap matrix. Expanded in the basis set representation then, this 
becomes 

c,~lF - ejSlc, i -- 0, 

where q,, the Fock matrix, represents the interaction of  electrons in a 'field' of  the 
other electrons. With ei determined as a root of the secular equation, the ci can be 
found by solving the n - 1 equations and imposing the condition that  the wave 
function be normalized. One often sees this written as 

HC = ESC, 

a generalized matrix eigenvalue equation. For each value of  i, the energy Ci gives 
an approximation to the ith state of  the molecular system, and the column, C, com- 
prises n coefficients which describe state i as a linear combination of  the Xk. T h e  
matrix eigenvalue problem is well known and well studied in science, engineering 
and many branches of pure and applied mathematics. 

For  polyatomic molecules, the LCAO method involves one or more basis func- 
tions (atomic orbitals) centered on each atom, 

Xi = ~ aixly ~:e-a: . 
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The presence of more than two atoms causes difficulties in evaluating the needed 
integrals. For a triatomic molecule, three-centered as well as one- and two-center 
integrals arise. For a molecule with four or more atoms, four-center integrals also 
arise, but the number of centers occurring in any one integral does not exceed four, 
as now illustrated. The Hamiltonian expression contains only one-electron and 
two-electron terms. A typical two-electron integral, as expanded in the basis set is 

c*cjd~dt f i X~ (1)X/(I)x;(2)X'(2) l-j-d'Id~ "r12 

If the basis functions Xi, Xj, Xk, XI, are each centered on a different nucleus, then 
the above is a four-centered integral. 

In ab initio SCF computations, with n different choices for each basis function, 
the matrix element computations involve the evaluation of up to O(n 4) floating 
point operations for the evaluation of Coulomb and Exchange (interaction) inte- 
grals, whereas the solution of a single eigensystem is O(n 3) (i.e. evaluation of the 
integrals dominate the computational effort). In semiempirical techniques, an 
approximate Hamiltonian is used so that the number of calculated Fock matrix ele- 
ments is greatly reduced. These methods are based on the assumption that only 
electrons on the same atoms have significant interaction energies; all others can be 
ignored. This reduces the calculation of integrals to O(n 2) and thus, solution of 
the eigensystem becomes the primary computational effort. Even still, values of n 
on the order of a few hundred are easily reached in even moderate-sized systems 
with several heavy atoms in these types of calculations. MOPAC supports four 
semiempirical Hamiltonians: MNDO [25], MNDO/3  [26], AM1 [15], and PM3 
[27]. These are used in the electronic part of the calculation to obtain molecular 
structures, molecular orbitals, heats of formation, and vibrational modes. The 
advantages of semiempirical over ab initio methods are that semiempirical methods 
are several orders of magnitude faster, and thus calculations for larger molecular 
systems are possible by using one of these semiempirical Hamiltonians. The relia- 
bility of these methods in predicting accurate geometries and heats of formation 
has been demonstrated in many applications [28,29]. 

Within the semiempirical approach then, the equations to be solved take the 
form 

- = O ,  

n 

where Ei is the eigenvalue of the molecular orbital ~i and 6ran is the Kronecker 6. 
The elements F,,~ of the Fock matrix are the sum of a one-electron part H,,~ (core 
Hamiltonian) and a two-electron part, and the electronic energy Eet is given by the 
expression 

Eet = ½ Z Z emn(Hmn + Finn), 
m i,i 
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where Pmn is an element of the bond order matrix (made up of the coefficients of 
the atomic orbitals). 

The SCF computation is iterative in nature, as the Fock operator depends on 
its own eigenfunctions, and the Fock matrix is usually constructed from the orbitals 
computed on the previous iteration. Thus, a sequence of eigensystems must be 
solved until convergence is attained. Moreover, the SCF iteration often is the inner 
iteration in a geometry optimization in which the nuclear coordinates are optimized 
with respect to energy. Thus, a single geometry optimization for a molecule with 
even a few heavy atoms (light atom refers to hydrogen; heavy atom refers to all 
other types) may require the solution of hundreds of large real symmetric eigen- 
systems. 

Geometry optimization proceeds by calculating the resultant forces of each 
atom in the system and then moving the atoms in the direction determined by these 
forces so as to lower the energy of the system. When the geometry is within a preset 
distance or energy of the local minimum, the optimization is stopped. The minimi- 
zation routine in MOPAC can be chosen as a modified Broyden-Fletcher-  
Goldfarb-Shanno or BFGS method [30], or, an eigenvector following minimiza- 
tion routine [31,32]. The additional relevant mathematics in these procedures for 
parallel implementation is the evaluation of derivatives of the energy expression 
with respect to the atomic coordinates of the molecular system. 

An additional computation in the SCF procedure is the vibrational analysis. 
This calculation characterizes the stationary point as found by the geometry opti- 
mization, and provides thermodynamic information for the molecular system. In 
vibrational analyses, the Hessian matrix of the energy with respect to the 3 • N - 6 
(N = number of atoms in the molecule) degrees of vibrational freedom in the 
nuclear coordinates, needs to be evaluated. The elements of the Hessian matrix are 
of the form, 

where qi, "" ", qn are internal coordinates suitable for describing nuclear motion, 
and the energy expression is as developed above. Diagonalization of this matrix 
results in sets ofeigenpairs (Xi, xi)  which determine vibrational frequencies and cor- 
responding normal modes for the molecule being calculated. The vibrational eigen- 
systems are usually dimensionally somewhat smaller than in the SCF case, but 
again they may need to be solved repeatedly, for example, as part of a reaction path 
following computation. 

2. Parallel MOPAC:  Structure and task distribution 

MOPAC is public-domain software available through QCPE [33]. Version 6.0 
of MOPAC runs on VAX, CRAY and workstation platforms, and consists of 
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approximately 50,000 lines of FORTRAN code, in 190 subroutines. Resident 
memory usage in MOPAC is governed entirely by parameter settings chosen at 
compile time. The amount of storage required by MOPAC depends on the number 
of heavy (non-hydrogen) and light (hydrogen) atoms that the code has been para- 
metrized to handle at compile time, and whether configuration interaction capabil- 
ities are incorporated. 

The majority of the computational time required to run MOPAC sequentially 
is divided among evaluating the electronic interaction integrals (Hartree-Fock 
matrix preparation), calculating first derivatives (geometry optimization proce- 
dure), calculating second derivatives (vibrational analysis) and solving the result- 
ing eigensystem (diagonalization). The precise division of CPU time among the 
tasks for a geometry optimization procedure may vary with molecular composition 
(e.g., the diagonalization task can represent from 30-80% of the total computa- 
tional load); however, the general procedures which dominate the work load for the 
total calculation will remain the same. Therefore, the SCF calculation, geometry 
optimization, and second derivative evaluation (vibrational analysis) for the avail- 
able Hamiltonians were parallelized in this work. 

The parallelized algorithms were implemented on a 64-processor Intel iPSC/ 
860 hypercube, and subsequently on an Intel Paragon; both distributed-memory, 
message-passing parallel computers. In the Intel hypercube, each processing node 
contains an Intel i860 CPU and 8 Mbytes of RAM (16 Mbytes/node on the Para- 
gon). The communication links are through Intel's Direct-Connect Communica- 
tions (DCM) hardware with a 2.8 Mbyte/s maximum bandwidth for the iPSC/860 
and 10-12 Mbytes / s on the Paragon 2. 

2 The band width on the Intel Paragon is widely variant depending on the system configuration; po- 
tentially, one could see a value as high as 4-5 times this. 

Task Distribution 
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Fig. 2. Pie charts illustrating the distribution of tasks for a representative optimization and 
vibrational analysis calculation. 
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2.1. GEOMETRY OPTIMIZATION COMPONENT 

Detailed inspection of  the algorithmic format  of  M O P A C  indicates tha t  most  
of  the computat ional  work in the semiempirical geometry optimization procedure 
is distributed over the following three tasks: 

(1) Evaluat ion of  one- and two-electron matrix elements. 
(2) Format ion  of  the Fock matrix and diagonalization. 
(3) Evaluat ion of  derivatives. 

(1) Evaluation o f  one- and two-electron elements. Geometry  optimization begins 
with a call to a controller for the specific optimization method.  This routine makes 
several calls to subprograms to carry out the various aspects of  full geometry opti- 
mization. Much of  the calculation occurs in setting up the Hamil tonian  matr ix 
(Scheme I: Task 1, Loop over ATOMS).  The resulting matrix elements are used to 
calculate the SCF heats of  formation, the nuclear energy, and the one- and two- 
electron interaction integrals. M O P A C  is based on a semiempirical approach, 

S p e c i f i c  
Task 

2 
2a  

2b  

2 c  

3 

Loop according to SCF criteria (COMPFG) 
~----->Evaluation of Hamiltonian matrix elements (HCORE) 

Loop over total number of ATOMS 
* flU 1 e- diagonal/off diagonal of same atom 
* fill atom-other atom 1 e- matrix (HIELEC) 
* Calculate 2 e- integrals 

Calculate e- - nuclear t e rms  (ROTATE) 
Calculate nuclear-nuclear terms 

Merge 1 electron contributions private to each CPU 
~---~->Formation of Fock matrix and Diagonalization (ITER) 

Loop over number of ATOMS 
* remaining 1 e- elements (FOCK1) 
* 2 e-/2-center repulsion elements of Fock matrix (FOCK2) 

Loop over number of ORBrrALS 
* density matrix (DENSlT) 

Loop over matrix BLOCKS 
Diagonalization (DIAG) 

* Construct part of the secular determinant over MO's 
which connects occupied & virtual sets. 

* Crude 2x2 rotation to "eliminate" significant elements. 
* Rotation of pseudo-eigenvectors. 

Merge contributions private to each CPU 
~>Evaluafion of Derivatives (DERIV) 

Loop over number of ATOMS 
* derivatives of energy w.r.t. Cartesians (DCART) 

Loop over number of VARIABLES 
* Jacobian : d(Cart)/d(internals) (JCARIN) 

Merge derivatives private to each CPU 

Scheme I. Schematic showing the parallel SCF procedure. 
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therefore, many of the integrals are ignored, others are calculated using experimen- 
tal parameters stored in common blocks, and a few are calculated fully. 

The computation of the one-electron and two-electron integrals has been distrib- 
uted over nodes by partitioning the number of atoms over nodes and giving each 
node an independent number of integrals to calculate. In general, 100 integrals are 
calculated for each heavy atom-heavy atom interaction, 10 integrals for each heavy 
atom-light atom interaction, and 1 integral for each light atom-light atom interac- 
tion. Ideal load balancing can be achieved by splitting up the integrals in accord 
with the type of interaction so that each node receives approximately equal work to 
do, i.e. statistical decomposition. 

Because each two-electron integral contributes to several Fock matrix elements, 
it is necessary to have the independent node results collected before the Fock matrix 
is created. A way around this is to have each processor work on its own partial 
Fock matrix, which is gathered once at the very end. The construction of MOPAC 
makes this more difficult, but is currently being investigated. 

(2) Formation of Fock matrix and diagonalization. The formation of the Fock 
matrix involves computation of the remaining contributions to the one-center inte- 
grals, and the two-electron two-center repulsion terms. Each of these subtasks is 
split over nodes in accord with the number of atoms (Scheme I: Task 2a, Loop over 
ATOMS). Once this is done, the density matrix can be computed along with infor- 
mation about orbital occupancy. This task is distributed over nodes in accord 
with the number of orbitals (Scheme I: Task 2b, Loop over ORBITALS). 

MOPAC employs a combination of techniques for complete diagonalization. A 
"fast" or pseudo-Jacobi diagonalization procedure is invoked in initial SCF itera- 
tions. The diagonalizations during the final SCF iterations are then taken over by a 
more rigorous QL algorithm [34-36]. 

Typically, a diagonalization method consists of a sequence of orthogonal simi- 
larity transformations. Each transformation is designed to annihilate one or more 
of the off-diagonal matrix elements. In the case of the Jacobi method, successive 
transformations then undo previously set zeros, but the off-diagonal elements con- 
tinue to decrease until the matrix is diagonal to the precision of the machine. Accu- 
mulating the product of eigenvector transformations gives the matrix of 
eigenvectors, and the elements of the final diagonal matrix are the eigenvalues. In 
general, the QL (QR if the matrix is reversed graded) algorithms are much faster 
than the Jacobi methods, however, the Jacobi methods can be computationally 
time-favorable relative to QL if a good initial approximation is available, and only 
a single Jacobi-sweep is done. 

MOPAC replaces the full QL eigensolution by a single Jacobi-like sweep of just 
the occupied-virtual block for intermediate SCF iterations often with considerable 
speed enhancements [37]. The algorithm is considered a pseudo- diagonalization 
technique because the vectors generated by it are more nearly able to block-diago- 
nalize the Fock matrix over molecular orbitals than the starting vectors. It is con- 
sidered pseudo for several reasons [3], the most important of which is that the 
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procedure does not generate eigenvectors. In the chemical sense, the full orbital 
matrix representations is not diagonalized, only the occupied-virtual intersection 
is. All of the approximations used in this pseudo-diagonalization routine become 
valid at self-consistency, and further, the approach to self consistency is not slowed 
down [38]. 

Given the lower half triangle of the matrix to be diagonalized in packed form, 
the algorithm has three primary loop sequences that constitute the procedure 
(Scheme 1: Task 2c, Loop over matrix BLOCKS). The first two loops together per- 
form the similarity transformation 

Vt F V  

that transforms from the atomic orbital to the molecular orbital representation (F 
represents the Fock matrix). This representation ensures that the resulting eigen- 
vectors are orthogonal, spanning the N-atom dimensional space. This step is fol- 
lowed by rotation, which eliminates off-diagonal elements. The matrix is then 
block diagonalized only, because only Fock elements connecting occupied and vir- 
tual orbitals must be zero at convergence. 

Two methods of parallel decomposition were investigated for the diagonaliza- 
tion procedure. The initial attempts distributed the work load over rows or columns 
of the matrix, i.e., control decomposition. This method resulted in timings that 
were actually significantly slower than the original unparallelized routine. This is 
due to large communication overhead from processing such small amounts of data. 
In addition, two utility routines were written to establish each node's starting 
work load position. Calls to these routines, along with additional global calls to 
gather and broadcasts to announce individual node data, resulted in extreme over- 
head costs. 

To avoid some of the complications of the above, a domain decomposition was 
employed. In this method, large groups or blocks of the matrix are distributed over 
nodes. Parallelization in this manner eliminates the need for broadcasting inter- 
mediate results. Only the final computed vectors are gathered via a global routine. 
Broadcasting of intermediate results is no longer necessary and scratch arrays 
already available are used for parallel decomposition so that no additional memory 
is required for this parallel method. 

(3) Evaluation of derivatives. Additional CPU-intensive subroutines involved in 
the geometry optimization include those that carry out derivative evaluation 
(Scheme I: Task 3, Loop over VARIABLES). The derivatives of the energy with 
respect to the internal coordinates is done via finite differences. The total work 
involves 3 • N variables that can be distributed equally over the number of nodes. 

2.2. VIBRATIONAL ANALYSIS COMPONENT 

Vibrational analysis (second-derivative evaluation) of molecular systems can 
be a formidable task. These calculations are, however, essential to characterize sta- 
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tionary points and to assess vibrational and thermodynamic properties of mole- 
cules. The vibrational analysis procedure involves construction of a 3 • N dimen- 
sional matrix of second derivatives of energy with respect to Cartesian coordinates 
(Scheme II). The calculation of each of these matrix elements represents an inde- 
pendent calculation, and the procedure holds the potential of being perfectly paral- 
lel. Following the calculation of matrix elements across nodes, the results are 
collected using a global routine and the full matrix diagonalized. 

The diagonalization of the matrix results in a set of eigenvectors, corresponding 
to the 3 • N - 6 vibrational motions, and a corresponding set of eigenvalues, which 
represent the respective vibrational frequencies of these motions. The other 6 eigen- 
vectors correspond to the rotational and translational matrix, with associated 
zero eigenvalues (disregarding numerical artifacts). 

Scheme II shows the vibrational analysis procedure. The parallelization of the 
vibrational analysis component requires partitioning 3 • N variables over nodes to 
calculate a matrix of second derivative elements. Because this is a symmetric 
matrix, there are 3 • N • (3 • N + 1)/2 unique elements to be computed. It is criti- 
cal to maintain proper indices over the nodes as the results are calculated. A global 
routine is invoked to collect the matrix in preparation for diagonalization. 

3. Results  

The parallel procedures were first implemented on the 64 nodes Intel iPSC/860 
at the San Diego Supercomputer Center. Since the first implementation of parallel 
MOPAC, we have replaced the iPSC/860 with the Paragon. In general, code per- 
formance is identical with the exception of a 25% faster clock in the Paragon, thus 
shifting the resulting curves by the appropriate amount. Code performance was 
demonstrated on a large group of molecules, varying in symmetry construction and 
heavy atom/light atom ratios (fig. 3). Computation timing results for geometry 
optimization (table 1) and vibrational analysis (table 2) calculations are reported. 

Although a principal performance measure is the elapsed time necessary to solve 
the problem of interest, temporal performance shows more clearly the behavior of 
a parallel program as a function of the number of processors. Temporal perfor- 
mance is defined [39] as the inverse of the execution time, and has the units of [(frac- 
tion of total solution completed)/second] in this application (sol/s). The objective 
behind this metric is to judge the performance of a particular algorithm based on 

Calculation of force constants and vibraional frequencies (FORCE) 
Loop over number of VARIABLES 
* Calculate second-order of the energy with repect to 

the Cartesian coordinates (FMAT) 
Merge second derivative components private to each CPU 

Scheme II. Schematic showing the parallel vibrational analysis procedure. 
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Fig. 3. Molecular structures. 

the fastest execution time. Single processor timings are taken as the best serial algo- 
rithm. For MOPAC, timings for the serial and parallel algorithms on a single 
node are identical. This is due to the particular parallel implementation which is 
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basically a shared memory version of the code with global libraries used to synchro- 
nize local copies of the data structure. 

As mentioned previously, detailed timings demonstrate that the majority of the 
computational time spent in MOPAC is split over evaluation of Fock matrix ele- 
ments, evaluation of derivatives, and diagonalization. Semiempirical methods pro- 
cess N 2 integrals instead of N 4 as with complete HF  methods, therefore, the 
computational bottleneck lies at the diagonalization routine. Timings indicate that 
diagonalization can represent from 30-80°,/0 of the total computational load, 
depending on the size and makeup of molecular system being considered. This 
makes an overall N 3 time dependence. 

The results from parallelization of the SCF and geometry optimization compo- 
nents of MOPAC are shown in table 1. Calculations were performed on 1, 2, 4, 8, 
16, 32 and 64 nodes. Optimization level 3 was invoked during code compilation. 
This level incorporates global optimization and software pipelining. In general, 
there is a large variation in absolute values of timings across the series of molecules, 
a phenomenon that is dependent on much more than the total number of atoms. 
In particular, factors such as (a) the number of heavy versus light atoms, (b) the 
symmetry of the molecule, and (c) the initial guess structure, dictate the complexity 
of the computation. Factors (a) and (b) will govern the number and complexity of 
integrals that will need to be computed as discussed earlier, and (c) will govern how 
many iterations necessary for convergence of the geometry optimization. 

Table 1 gives data for the geometry optimization calculations for the set of mole- 
cules arranged in order of decreasing number of atoms. Speedups approaching 5 
with respect to single processor times are observed for individual computations. A 
definite compartmentalization of the data is noticeable on the basis of the number 
of atoms in the molecular system. The peak performance across node combinations 
is in bold face for each molecule. Scanning the entire data base of molecules shows 
the general rule of thumb: 

Number of nodes 

Number  of atoms, n at optimal performance 

> 29 64 

15 < n < 30 32 

9 < n < 1 6  16 

< 1 0  8 

Fig. (4a) shows a plot of temporal performance for one molecule within each of 
the first three groupings (Solutions of molecules that are < 10 atoms are so fast that 
they are off scale from plots including other categories). One can pick out the 
peak in these curves as the optimal node range, as the falloff in temporal perfor- 
mance is much faster for smaller and smaller molecules. Running the calculation 
on more than this optimal number of nodes will be inefficient due to either a very 
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small distribution of work across nodes, or some nodes being left completely idle. 
In these cases, performance is degraded from communications costs dominating 
due to many nodes transferring very small amounts of data. 

Fig. 4(b) shows a plot of temporal performance for the four largest molecules 
in table 1. From this plot, one can see the effects of the various factors contributing 
to the solution time for different molecular constructions. Although the molecules 
are all roughly similar in size, solution time is widely variant due to the differences 
in molecular construction. Molecule 1 has a larger number of light atoms to com- 
pute integrals for (16/24) than molecule 2 (20/20), thus reducing the overall arith- 
metic involved. Molecules 3 and 4, although identical in heavy/light atom (18/18) 
construction, are very different in the number of iterations that are necessary for 
convergence. Molecule 4 is a very floppy molecule with a flat molecular potential 
energy surface, and so convergence is very difficult, as seen with the relatively enor- 
mous computation time and number of iterations required for convergence in com- 
parison to molecule 3. Molecules 2 and 3, on the other hand, are similar in size (40 
versus 36 atoms), have equal number of heavy versus light atoms, and are similar 
in the number of iterations necessary for convergence of the geometry. All of these 
factors are reflected in the plot of temporal performance for the grouping. Molecule 
1 shows the fastest overall solution time, molecules 2 and 3 are comparable in solu- 
tion time, and molecule 4 is highly inefficient in solution time. 

A breakdown of the overall computation into individual tasks illustrates more 
clearly the effects of the parallelization. Fig. 4(b) shows a breakdown over the three 
tasks parallelized for molecule 5 in table 1 as a representative example. The calcula- 
tion of derivatives for this molecule represents the greatest component of work, 
and so the parallelization of the derivative routine is the most impressive, 
approaching linearity up to 32 nodes before leveling off. Diagonalization and for- 
mation of matrix elements comprise a much smaller portion of the overall compu- 
tation time, and level off at a much faster rate (optimization levels off at 16 nodes, 
formation of matrix elements at 4 nodes). Geometry optimizations that involve lar- 
ger matrices (i.e., have more integrals to compute) would show a greater level of 
parallelization in these latter two tasks. 

Timing results for the parallelized vibrational analysis procedure are given in 
table 2. The absolute timings are more uniform for molecules of similar size and 
molecular construction than was true for the geometry optimization. This is 
because the primary task in any particular molecule is the calculation of 3N - 6 
(N = #atoms)  second derivatives of energy with respect to coordinates, a function 
of the number of atoms only. Fig. 5(a) illustrates graphically the temporal perfor- 
mance for a representative sampling of the total group of molecules from table 2 
(molecules 1, 2, 6, and 22). The vibrational data show initial linear parallelism for 
all sizes of molecules. As the work is distributed over more and more nodes, effi- 
ciency is lost, as a function of molecular size and temporal performance levels off. 
One factor contributing to this leveling off is that there is less and less work to distri- 
bute over nodes. This is why the larger molecules show better performance than 
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the smaller molecules. In addition, a latency effect could be contributing to a 
decrease in efficiency due to more nodes being involved in the global calls, an effect 
that is uniform over all sized molecules. 

As mentioned previously, the calculation of the second derivatives comprise 
about 90-95% of the total work load in a vibrational analysis calculation. Other 
minor tasks include the initial SCF to obtain the energetics and first derivatives. 
Fig. 5(b) shows the effects of parallelization of the second derivative component 
with respect to both the overall computation time and a model based on Amdahl 's 
law for molecule 5. 

An important issue here is the range of problem sizes for which the performance 
is acceptable. Because keeping the number of processors fixed and increasing the 
problem size increases the amount of local computation each node does, perfor- 
mance is expected to improve for larger molecular systems. This is illustrated in 
figs. 6 and 7 for 64 node results over the entire range of molecules for geometry opti- 
mization and vibrational analysis, respectively. Similar curves are obtained for 
the other node combinations. 

5. Discussion 

A major limitation on performance, especially for the geometry optimization 
calculations, is the code memory requirement. Even for the largest molecules calcu- 
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lated, there is a noticeable asymptote in the performance curve as the number of 
nodes increases. This is primarily because the molecular systems are relatively 
small in comparison to the number of nodes being allocated to do work, a restric- 
tion resulting from the memory constraints. The main problem in MOPAC stems 
from the rather poor structure of the code in terms of memory utilization. The use 
of replicated data parallel decomposition requires that sufficient memory be held 
on each processor for the entire symmetric Hamiltonian and Fock matrix. As a 
result, all internal communications throughout parallelized MOPAC are carried 
out with fast-library global routines and not via sending/receiving packets of infor- 
mation. This method of parallelization was chosen in order to minimize the com- 
munication overhead and latency costs, which were observed to be extremely high, 
especially with the first levels of operating systems on the MIMD machines [39]. 
There will still be startup time for these global routines that will contribute to the 
overall time costs, however, this will be much less due to better algorithmic con- 
struction with global routines, and the fact that the global routines are faster than 
the send/receive routines. 

Unfortunately, the goal of being able to calculate larger molecules that can be 
currently calculated with ab initio techniques has not been met, due to these severe 
memory constraints. The declining cost of semiconductor memory makes it reason- 
able to assume that large-scale parallel computers will provide sufficient memory 
per node to accommodate much larger molecules with the existing software. In 
addition, memory need not be all semiconductor memory; one could think of 
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employing common file system disk storage to accommodate large intermediate 
information such as integrals. Still, one will inevitably reach the limits of the 
increased memory capabilities. Therefore, we are currently giving attention to 
algorithmic modifications and distributed memory capabilities. 

There are two directions that one can think about pursuing for this problem. 
One involves usage of a shared memory model construct on top of a distributed 
memory platform utilizing the T3D parallel platform. This model supports several 
styles of programming: message passing, data parallel, global address (shared 
data), and work sharing, all of which may be combined in the same program. The 
model includes features that allow a user to define a program in terms of the behav- 
ior of the system as a whole (task parallel), and/or,  in terms of the behaviors of indi- 
vidual tasks (data parallel). The second direction, which is in the same spirit as the 
first, involves the implementation of specialized global array tools [40] that allow 
a distributed data parallel strategy to be implemented within the iterative SCF pro- 
cedure. Preliminary results in both of these areas show much more promise towards 
the calculation of molecules of the size of hundreds of atoms. 

6. Conclusions 

With (MIMD) computers clearing the way for record-breaking computation 
speeds, scientific programmers of the 90s are being pushed to the world of parallel 
programming. Massively parallel processors achieve their high speed by working 
on many parts of the problem in parallel. While it is difficult in many cases to struc- 
ture a problem for efficient highly parallel solution, for those problems for which 
the technique is applicable, these computers are an increasingly important compu- 
tational tool, especially for large and difficult chemistry problems. Thus, it is clear 
that implementing chemistry applications in parallel environments is a milestone 
for computational chemistry. 

In this work, we have demonstrated the promise as well as the difficulties 
involved in the implementation of semiempirical quantum chemistry applications 
on the Intel hypercube platform. As the first level of implementation of these meth- 
ods, a replicated data parallelism strategy has been employed. In this strategy, 
even though tasks are distributed over nodes, results of all distributed tasks are col- 
lected together on each node (replicated) at various points within the Hartree-  
Fock procedure, thereby causing limitations, especially for the geometry optimiza- 
tion calculation, due to the amounts of memory necessary to hold these quantities 
on each individual node. This severely limits the size molecular system that can be 
calculated and forces an unacceptably low ratio of processors to memory. With less 
than 32 Mbytes/node, the size of molecular systems that can be modeled is limited 
to less than 60 atoms, and the performance saturates at 16 to 32 nodes. 

The vibrational analysis component shows more promise within the replicated 
data parallel implementation. Results show a near linear relationship between the 
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number of nodes and the performance of a series of widely varying molecular con- 
structs. In addition, this work has shown the potential for parallelization of the 
vibrational component within ab initio codes [13]. 

Significant attention by this author as well as others [40], is now being given 
towards the implementation of these methods using a distributed data parallel 
strategy, which dearly shows to be superior in light of the known memory problems 
associated with these methods [39]. In the distributed data parallel strategy, indivi- 
dual node tasks are not collected together on each node at any time during the cal- 
culation. Thus, performing a quantum mechanical calculation on a molecule of 
size N atoms, can be distributed over p processors such that only Nip amount of 
memory is ever needed on any individual node. This will allow our goals involving 
calculation of molecules with hundreds of atoms, and study of reaction paths and 
solvent effects of large systems to be a reality. 
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